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1. Introduction 

Define over an n-dimensional Riemannian manifold M a vector bundle X with compact 
structure group G. Let A be a connection l-form on ad(X) with curvature 2-form B,J. In 
[ I l] we introduced the system 

DAB,4 = ~;(P(Q)B,.,) = 0. (I.1 

where Dz is the formal adjoint of the exterior covariant derivative DA on ad(X) and p 
8+ -3 lR+ is a C’ function satisfying 

0 < /(.I _( p’(Q) + 2p(Q)p’(Q)Q ( K? i x (I.2 ) 

for constants KI and ~2. where Q = Q(B) = 1B1’. 
If G is ahelian and X = T*M, then Eqs. (1.1) reduce to the nonlinear Ho&r equations 

I16]: 

dB = S(p(Q)B) = 0 (1.3) 

for the d-closed 2-form B, where d is the flat exterior derivative on M and 6 its formal 
ad.joint. If we interpret p(Q) as p-‘(Q), where p denotes magnetic permeability, then 
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Eqs. ( 1.3) provide a model of magnetic fields in matter. We call solutions of ( I. 1 ) nonlineur 
Hadg~,fie/ris, as Eqs. ( 1.1) can be obtained from Eqs. ( 1.3) by replacing the cotangent bundle 
with a curved bundle. If G is non-abelian but p( Q) is constant. then Eqs. ( 1.1) reduce to the 
hg-Mills equations: DB = D*H = 0. If G is the abelian group U ( I) and p(Q) is unity, 
then Eqs. ( 1. I ) reduce to the sourceTfree Max~~.~~Il equations irl frw spc~: dB = fi B = 0. 

Eqs. ( I. 1) can be endowed with a variational structure by detining the nonlinear Ho&r 
energ) 

If G is abelian and X = T*M, then the admissible class is a cohomology class of differential 
forms [18]. If G is non-abelian, typically SO(n), then the admissible class is a set of finite- 
energy connections (cf. [21] for the case p 3 1). 

Eqs. (1.1) have a physical analogy as the Yang-Mills theory arising from the magneto- 
statics of materials possessing nonlinear dependence of magnetic permeability on applied 
magnetic field strength. The choice of non-abelian structure group puts a twist in the bundle 
of magnetization states. This twist is represented by the nonvanishing Lie bracket [ , ] in 
the curvature 2-form B,J = dA + i [A. A]. The existence in nature of precisely this sort of 
twisting is a matter for speculation. 

In [ I 1] we proved that if condition (1.2) is satisfied in a bounded open Lipschitz domain 
Q of Iw”, then any weak solution (A. BA) of ( 1.1 j is Holder continuous in G’ provided 
BA.GL~(R) for some p > in. Moreover, if the quadratic form Q in (1.1) is replaced 
by the quantity Q + nz2, where m is a nonvanishing section of the (l/n)th power of the 
determinant bundle, and if p(Q) = (m’ + ) BA Iz)u-’ for (Y E (in, l] where n -c 4, then 
system (1.1) possesses a weak solution in ti. Here we derive some fundamental global and 
local properties of solutions. 

For details on the gauge-theoretic background of this paper see, e.g.. [7]. The nonlinear 
Hodge equations ( 1.3) were introduced by Sibner and Sibner in [ 161. For a brief description 
of the electromagnetic interpretation of the nonlinear Hodge equations see, e.g., [S]. Other 
applications of the nonlinear Hodge equations, and the decomposition theorem, were intro- 
duced in [ 181. Throughout this paper we denote by C generic positive constants, the value 
of which may change from line to line. 

2. A Liouville theorem for singular domains 

The results proven in [ 1 l] were local. In this section we give an example of the simplest 
kind of global result available for solutions of (1.1). Let M be a complete Riemannian 
manifold having constant nonpositive sectional curvature. We place conditions on the inte- 
grability of the field BA , and on the topology of its apparent singular set, sufficient to force 
the field potential A to be constant almost everywhere. 
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To this end we combine ideas from geometric measure theory due to Almgren [I ] and 
Price (121 with p.d.e. methods of Carlson [22] and Serrin [13]. (See also [2].) We use ge- 
ometric measure theory to replace the ordinary derivative of the energy functional E by a 
suitably defined Lie derivative, so that the variations of E occur in a space of reparametriza- 
tions of the underlying manifold rather than in a space of infinitesimal deformations of 
the bundle connection. The former space is more tolerant of singularities than is the latter 
space. The p.d.e. methods are used to relate a priori information on the integrability of BA 
to topological information about the singular set. If BA is sufficiently integrable, then the 
existence of an apparent singularity is no longer an obstruction to performing a limiting 
argument that implies global triviality of the field. The results of this section extend earlier 
work for mappings between Riemannian manifolds [IO]. 

The hypotheses which we place on the field BA are extremely weak (but so is the con- 
clusion). For example, we do not expect BA to satisfy a differential equation, even weakly. 
Instead we place a condition on the energy-expression (2.1). below-analogous to prescrib- 
ing the decay of a generalized current density (cf. [ 121) or of a generalized mean curvature 
(cf. [I. Section 4.31). This analogy between current density and mean curvature will be 
developed briefly in Section 5. 

Denote by 4’ a l-parameter family of compactly supported diffeomorphisms of M with 
4’ 0 4’ = @+I and @” the identity transformation. The family 4’ can be lifted to the 
principal bundle I7 by parallel transport, with respect to an arbitrary smooth connection. 
along the curve X, = 4”(x) from x0 = x to xt = 4’(x). For A E T(M, A’(adn)), define 
A’ = (@‘)‘A, where @* is a lifting of #* to f (M, A’ (ad I7)). Details of this construction 
are given in [ 121. The r-variation of the nonlinear Hodge energy E is given by the expression 

d 
&ECBA) = -E(BAr)lr=o, 

dt 

where E is the nonlinear Hodge energy ( 1.4). We say that A is an r-stationary connection 

if 6,, E = 0. In proving our Liouville theorem we only require the weaker assumption that 
on any domain 0 c M/C for which aR = 0 we have 

(2.1) 

where ,f is a measurable function. with compact support in a disc of radius 5, constructed 
so that f(x, r) = o( 1) as r -+ 00 (this limit exists, as M is Hn or KY); the variation vector 
field c = d@(x) f)/dtjt,o is the initial velocity field for the flow generated by 4’. As in [ 111. 
we assume that condition (1.2) is satisfied by the function p. The constants ~1 and ~2 in this 
condition are important, for we do not assume that the energy E is finite on all of M, but 
rather that the energy satisfies a growth condition at infinity. In this section we prove: 

Theorem 2.1. Let the pair (A. BA) satisfy (1.2). (2. l), and the growth condition 

(2.2) 



If C is a Lipschitz submanifold of M then to can be taken to be zero. Notice we do 
not assume that the field BA satisfies Eqs. (1.1) anywhere in M. In Section 5 we consider 
an extension in which assumption (1.2) of Theorem 2.1 can be weakened. For simplicity, 
and with no essential reduction of generality, we take M to be W in the proof; for the 
modifications necessary in order to include hyperbolic space, see [ 121. Because ,f’ is only 
o( I), condition (2.2) implies that E may not be stationary even as 5 tends to infinity. 

Lemma 2.2. Ij’a gnuge potential A has,finite energy irl (I c.ornpactly supported dorruin Sz 

of‘ R”. tlzen 

W=-/($ ) 1 p(~~)d.~ div< * I +4 P(Q)(B(Vic. Pi). B(ei. ej)) * I, 

where {e;). i = 1.. , II, is un orthonormal hasis,for the tangent space c$Q and Vi is the 

derivative in the direction of the vector e;. 

Proc$ Write u = 4’(x) = x + t<(x) + O(t’). Recognizing that terms of second-order and 
higher in t vanish, we compute 

d d iju’ auj 

dtl,=o 
Bij(u)du’ duJ = dllr,o B;j(“)- dx’ __ d-x”’ 

ijx” ag”’ 

d 
= -B;,(u) S;S,:, + S’.r* + dx“ dx”‘. 

dtlr=o ’ i)_r”’ 

Employing obvious symmetries, we have 

d I 
----B;j(“)du’ duJ = ?u;j(+)s ds” dx’. 
dtlt=o 

Observe that 

d 
S,E(BA)ln = dr,_ n 

s 
R((@‘*B,.q, @‘*B,J)) * 1. 

where 

4? 

R(Q) = 
s 

P(s)ds. 

0 
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The chain rule implies that if J = la.x/8’ul is the Jacobian, then 

&E(BA)lQ = s R(Q)& J[(@')-lJ * 1 t 
R 

+ ~[R;,;(~)drr’d~j,, B/,,(U)d~‘du”’ 
drlt=o 

R 

from which the assertion follows. 0 

Lemma 2.3. Under the hypotheses ($ Theorem 2.1, the nonlinear Hodge energy satisjies 

d 
- ~4dmG-ne-K31s 

dt 
2 0. 

where D, is un n-disc of radius T centered ut the origin oj’coordinates in KY’. 

Proq$ We initially prove the lemma under the assumption that (A, BA) satisfies (1.2), 
(2.1) and (2.2) on all of DT+6, where 6 is a sufficiently small positive constant. We then 
introduce modifications necessary to accommodate the possible existence of the set C as a 
subset of D,. Thus for the moment consider the special case in which A is nonsingular on 
D r+S. 

Choose6 = q(r)r.(a/ar), where (ei)y=, = {a/&, a/%, . . , a/Mn) isanorthonormal 
basis; q(r) E C,“[O, l] is a function chosen so that q(r) = u(r/t) 
q(r) = 1 for r 5 z, 5 E (0. 1); and q(r) = 0 for r > 5 + 8, 6 > 0. 
of variation vector field, 

&E = - 
s 

R(Q)[ng + rq’l * 1 + 4 
s I 

p(Q) q]BI’ + rq’ 
, 

s-2 n L 

$Jel *I. II 

satisfies q’(r) _’ 0 Vr: 
In terms of this choice 

Thus (2. I) can be written 

J’ 
R(Q)[nq+ry’-fr-VI*1 54 

D 

Write condition (1.2) in the form of a differential inequality 

d 
0 < KI < -[Sp2(S)] 5 K2 < 03. 

- ds 

Integrating this expression over s from 0 to Q yields KI Q 5 Qp*( Q) 5 ~2 Q. For positive 
values of Q and, by a limiting argument, for nonnegative values of Q, we immediately 
obtain p(Q) 5 ,,&. Alternatively, we can integrate the differential form of (1.2) over s 
from 0 to r to establish the lower bound p(t) 2 fi, which can itself be integrated over t 
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from 0 to Q to obtain K(Q) 2 fiQ. We use the latter inequality to bound the right-hand 
side of (2.3) above by the expression 

and the former inequality to bound this expression above by 

Inequality (2.3) now assumes the form 

.I R(Q)]@ - 4&7$i + rn’ - .f‘ral * 1 5 4 

n R 

Writing m’(r) = -t(8/i3t)qs (I) and multiplying both sides of the resulting inequality by 
the integrating factor 

t4mi-(n+l)e--K31r 

completes the proof for the special case of a nonsingular gauge potential. 
In the genera1 case A is singular on C c D, and BAcL"(M) for /7 = 2(k - tn)/(k - 

~0 - 1). (The requirement that C is contained in D, involves no loss of generality, as the 
same arguments will work, with slightly increased notational complexity, if only part of C 
is contained in D, .) 

Replace the variation field of the preceding case by the quantity $ = x(“)n(r)r. (alar). 
We have included in c an extra multiplicative term x(‘) , representing a sequence of functions 
which vanish in the neighborhood of C. By a theorem of Serrin 113, Lemma 81, if the 
compact subset C has zero s-capacity with respect to M, where 1 5 s 5 n, then we can 
choose the sequence of functions x (“) in such a way that 0 ( x (“I 5 1 VU; lim,,,, x (I’) = 
1 a.e.; and limv_,oo Vx(“) = 0 in L”. Moreover, a result by Carlson [22] guarantees that if 
the compact subset C has Hausdorff dimension m, for 0 < IYI < n - 1, then C thas zero 
s-capacity with respect to the n-dimensional set M, where .s = tt - ttz - ~(1 and tn is a 
numberin(O,n -m - 1). 

Our choice of variation vector field results in a harmless multiplicative term x (I” which 
must be carried throughout the calculation, and a possibly dangerous term involving the 
derivative of xc”) with respect to r, which enters into the derivatives of < via the product 
rule. Thus both sides of (2.3) now contain an extra term which must be estimated. The 
left-hand side of (2.3) is replaced by the quantity 

s 
R(Q)[x%)(v + ~‘1 + x “‘)‘(r)ri~ - f’rq] * I. 

R 

Writing p(t) 5 fi and integrating over t from 0 to Q yields 
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s x(“)‘(rhWQ) * 1 ? -~ll~~~“~II~,~~IlQll~~~ 
R 

for p = k - to and q = (k - cO)/(k - EO - 1). The right-hand side of this inequality tends 
to zero in the limit as u tends to infinity. Thus the left-hand side of (2.3) only becomes 
stronger if we neglect the extra term. 

Similarly, on the right-hand side in (2.3) we now have 

s 2 

* 1 I ~ll~x~“~II~~~I/Qll/.~~. 
R 

which tends to zero as u tends to infinity for the same values of p and q used in estimating 
the left-hand side of (2.3). We complete the proof as in the preceding case, by the method 
of integrating factors. This completes the proof of Lemma 2.3. n 

Combining the assertion of Lemma 2.3 with the energy condition (2.2) completes the 
proof of Theorem 2.1. 

3. Removable singularities in nonlinear Hodge forms 

Henneaux and Teitelboim [4] have developed a model for electrodynamics in which the 
gauge potential is a differential form of arbitrary degree. The gauge group is U (1). The 
classical magnetostatics of this theory for magnetic media are mathematically identical to 
nonlinear Hodge theory. In this section we take the B-held to be a differential form of degree 
II’ on a Riemannian manifold M. Isolated point singularities in this field would correspond 
physically to “magnetic charges,” or “sources of true magnetism.” We show that apparent 
singularities of this kind are removable under certain hypotheses on the integrability of the 
lield, the size of the singularity, and the dimension of the underlying domain. In this section 
we prove: 

Theorem 3.1. Let the diflerentialform B E f (M. A*‘(T* M)) smoothly sati@ Eqs. (1.3) 
bvith the ellipticity conditiorz (1.2) on a disc D/C. Here D is a small euclidean n-di.sc, 
II > 2(w + l), centered at the origin of coordinates of a coordinate chart S on M and 
completely contained in S; C is a compact set ofcodimension k 1 2n/(n - 22~) completel> 
contained in D. If BG L “/“(D), then B~C’.y(D),forsorne v > 0. 

Lemma 3.2. Let BcT(M. A’“(T*M)) smoothlx satisfi the inequality 

(3.1) 

01~ a disc D/C, with aij satisbing the ellipticity condition ml l<l’ 5 a’jciej 5 rn2/.$/‘, 
where in1 and m2 are positive constants; D is a small em&dean n-disc, n > 2(w + l), qf 



Pt-or$ The proof is an extension of arguments in [3,13,15]. Choose t = (q@)“G(Q), 
where ~1, I/I > 0 but I/J(X) = 0 VxcQ(C), where 52 is a neighborhood of C; yC(;C(D’) 
for D’ CC D: G(Q) = H(Q)H’( Q). where H(Q) is the following variant of Set-r-in’s test 
function: 

H(Q) = I k-t 
k-2-c 

(1 . Q (X-2-~)/2)ln/(rl-2)l;n/2rr.(~-~) _ 2 _l[tl/(t~-2)l’n/4u’ 

k--E 1 
for1 5 Q. 

Iterate a sequence of elliptic estimates, taking successively B E La(‘)(D) for a(i) = 
[n/(tz - 2)]‘(tz/w), i = 0, 1. 2,. Letting 11 . IIp,y denote Hp.Y norm we have, by 
ellipticity, 

llW’)“*vV’,11o.~ > CIIII~VHIIO.~. 

IbVQ . ~v~V(~I$)HH’IIO.I 5 WPHll;,2 + WlW@WlI~,,. 

IlzQW)*Gllo.~ I ~llzll0.~,2llrlCI~ll:.2. 

ll~VQW)2ffH’llo., i Ckll~aW+2 + ~llvPfU~,2. 

Replace $ by a sequence $j of functions, vanishing on C. such that as j -+ CQ the sequence 
+,i + 1 in Loo but Vt+!Ij --f 0 in Lk-‘. We find that for every 1 we have 

0 I lim IlV(Vlclj)HII$.2 
/-x 

Substituting these estimates into (3.1), absorbing small terms on the left, and letting 1 tend 
to infinity, we obtain on some smaller disc the estimate ]]nVQh(‘) ]]n,2 5 Cl] (Vn)Qh(‘) /lo.2 
for h(i) = ia( The Sobolev embedding theorem allows us to iterate this sequence of 
inequalities with the value of i increased by I at each iteration. We conclude after a finite 
number of iterations that Qq E H ‘,2 (D,,) for any finite positive 9 and some rt (0. I]. Because 
B is smooth away from the singularity and C is compact, we find that Qqt H ‘.’ on all of D. 
This is sufficient to apply Theorem 5.3.1 of Morrey [9] with h = h(iN), where N depends 
on n, proving Lemma 3.2. 0 

Proqf of Theorem 3. I. We observe that solutions of Eqs. (1.3) locally satisfy inequality (3.1) 
with considerably stronger hypotheses on a ‘j, b,i and z than appear in Lemma 3.2 (cf. [ 14; 
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17, Sections 3, 4; 19, Section 11 for details; we assume these relatively weak hypothe- 
ses in Lemma 3.2 not only for mathematical generality, but also to derive a subsequent 
gauge improvement theorem for solutions of ( 1.1) possessing higher-order singularities 
(Theorem 4.2)). Moreover, the result of Lemma 3.2 implies, via integration by parts, that 
B is a weak solution of Eqs. (1.3) in all of D. Now apply Theorem 4.1 of [ 141 to conclude 
that B is HGlder continuous on D. This concludes the proof of Theorem 3.1. L. 

4. Gauge improvement in nonlinear Hodge fields 

One criterion for selecting the hypotheses of the existence and regularity theorems in [ 111 
was that we do not expect better results for system ( 1.1) than we have for the standard Yang- 
Mills or nonlinear Hodge equations. For example, if we let KI tend to zero in condition ( 1.2). 
then a regularity theorem would apparently require the solution of boundary-value problems 
for the higher-dimensional Yang-Mills equations and the nonlinear Hodge equations fol 
Z-forms (in order to apply the standard regularization argument [ 141). Both are well-known 
open problems. Nor can we weaken the Lf’ hypothesis on B,d (~7 > in) without improving 
the existing regularity theory for Yang-Mills connections [2 11. However, we can weaken 
the L” hypotheses if we assume that the solution (A. BA) is actually smooth on some 
subdomain. We can produce solutions of the Yang-Mills equations which are smooth on 
a subdomain by taking the limit of a sequence of approximations, and solutions of ( 1.1) 
can also be obtained in this way. We expect that the sequences will converge only on 
subsets of the original domain. This process will result in solutions of (1.1) which possess 
singularities. By standard arguments we can predict the Hausdorff dimension of the singular 
set, which will depend on the choice of p. The question is whether apparent singularities 
can be removed by applying a continuous gauge transformation. 

For example, Theorem 3.1 can be extended to solutions of Eqs. (1.1). In place of inequality 
(3.1) we use the following estimate (cf. [ 11. Section 31): 

Proposition 4.1. Solutions (A, B4) #Eqs. ( 1.1) undcondifion (1.2) on cl domain Q c R” 
.votisfi the differential inequalit? 

Here Cl and C2 ure positi\v dimensional constunts, H is II section of the detrrminant 
bundle raised to the power 1 /n, and a’-i (B) ure hounded meu.suruhle jktions .satisfiiq 
the ellipticity condition of Lernmu 3.2. 

Pro@ The Laplace-Beltrami operator V’ satisfies 

-$+(P(QP~, P(Q)BA) = -(V"MQ)hd. P(Q)BA) 

+ lW(Q)&t)I' + P~(Q)UQ). 
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In, c.g., 161, K (.) is explicity computed. We require only the observation that K is aquadratic 
form in /I,+. Now H,i satisties ( I. 1). so we have 

-$v2(~(Q)BA. dQ)BA) = (-wm)BA). p(Q)BA) 

+ (cl* [A, *b(Q)Bn)l. P(Q)BA) 

+ IW(Q)B,z)l’ + &Q)K(Q)> 

where * : A” + A”-/’ is the Hodge involution. We estimate 

(d * IA, *(P(Q)BA)~. P(Q)BA) I ~(lAllVQl + IVAIQ) 

from the product rule and the inequality 

l(vp(Q)B~)), ~(Q)BA) i Id(Q). WQ)Qp(QJ + ip2(Q). VQI 

5 &“(Q) + ‘$(Q)d(Q)Q)VQI I ~K~IVQI. 

There exist bounded functions b,i. j = 1, . . . II, such that 

-;V*(p*Q, = -;(p2 + 2pp’Q)V’Q + --&x, . , P)$ 
/=I 

Taken together, these statements verify the assertion of Proposition 4.1. 0 

Theorem 4.2. lf’the pair (A. BA) is a smooth solution of ( 1.1) in D/C with p sati@ing 

’ condition. ( 1.2), if A is an element of the space H “i’(D), if B is an element ofL”l’(D). 
and if D, 2, and n satisfy the hypotheses oj Theorem 3.1 with UI = 2 and C a Lipschit? 
manifold, then there exists a continuous gauge transformation 8 to u gauge in which the 
pair (g(A). B) is Hiilder continuous in all of D. 

Remark. The condition on A requires fixing a gauge in which A is already reasonably 
smooth. Theorem 4.2 then guarantees the accessibility of a gauge in which A is considerably 
smoother. For this reason we call such a result a gauge improvement theorem rather than a 
removable singularities theorem. Unlike Yang-Mills fields, solutions of (1. I) fail to satisfy 
an elliptic system with diagonal principal part, even in a good gauge. (The same is true of 
solutions of the nonlinear Hodge equations.) Thus, for example, Hiilder continuity does not 
automatically imply any higher degree of smoothness. 

Prooj’qf Theorem 4.2. Apply the arguments of Lemma 3.2 with inequality (3.1) replaced 
by the inequality of Proposition 4.1. Choose u’ = 2, Ihl = IAl + lO(, and z = lVA[ + IBI. 
We find that 1 Bj”f4 lies in the space H’.‘(D). But this implies, via the Sobolev embedding 
theorem, that B lies in a higher Lp space than p = $n. An elementary integration by parts 
against an admissible test function shows that B isa weak solution of (1.1) in all of D. 
Now apply the arguments of [ 1 I] for weak solutions which lie in L”(D) for p > in. Use 
the modifications of [21] introduced in 1201 in order to make gauge transformations up to 
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the boundary of C. (This is where we use the fact that C is a Lipschitz manifold.) This 
completes the proof. 3 

5. A nonuniformly elliptic example 

In this section we develop a formal analogy between a simple model for magnetic fields 
in permanent magnets and certain hypersurfaces of prescribed mean curvature. Consider the 
equations for magnetic media where p ( Q) = p- ’ (Q). Here I_L is the magnetic permeability 
of the medium, assumed to depend on the quadratic form Q = 1 B 12, where B is the magnetic 
tield (see, e.g., [5, p. 25 11). If the medium possesses nonzero current density, represented 
in the Henneaux-Teitelboim model by a w-form J, then the equations become 

dB,a, = 0. S(pL-’ B,A) = J. (5.1) 

In the special case in which w = 0 (i.e., A and J are O-forms and B is a l-form) and 

/I(Q) = (Q+l, > . . ‘/2 Eqs (5.1) are identical to the equations forn-dimensional hypersurfaces 
of prescribed mean curvature J [ 181. Because the pre-saturation permeability of a magnetic 
material always exceeds its vacuum value of unity and tends to increase with increasing B 
at a decreasing rate, this choice corresponds to one of the simplest physical models for the 
dependenceofp on Q. 

Precisely, let ti be a bounded, simply connected, convex domain of R” having pre- 
scribed boundary data $ : a52 --+ W- E C’+Y(aQ) for some y > 0. Let C :x”+ = 
A(x’, . . . .P) be a family of n-dimensional hypersurfaces defined by the vector-valued 
function A and passing through the family of (n - I)-dimensional hypersurfaces defined 
by the vector-valued function 4. In this case Eqs. (5.1) define a family A of hypersurfaces 
having gradients B and mean curvatures equal to the prescribed vector-valued function 
J E C’(D). Eqs. (5.1) are elliptic provided that 

0 < L)(Q) + 2Qp’(Q) = p-'(Q) I - ~~ (5.2) 

Notice that if p( Q) = C( Q + I)‘/’ for an arbitrary nonzero constant C, then the right-hand 
side of Eq. (5.2) is equal to C’(Q + 1)-‘12 for some positive constant C’. This expression 
exceeds zero for Q < co. However, ellipticity breaks down in the limit as Q tends to infinity. 

The breakdown of ellipticity is a serious problem for arguments such as those of Section 3 
and we do not expect good results in such cases unless the conditions listed in the appendix to 
[ 141 are met. However, one might expect that the arguments of Section 2 would be immune 
to a breakdown of ellipticity in the variational equations, as Theorem 2.1 does not require 
the field to satisfy any differential equation at all. 

In fact, the ellipticity condition (1.2) is a more important hypothesis for Theorem 2.1 
than the satisfaction of the variational equation that the condition qualifies. A breakdown 
of ellipticity implies that the constant KI in condition (I .2) equals zero. In this case the 
left-hand side of the inequality of Lemma 2.3. which is the foundation of the proof of 
Theorem 2.1, fails to exist as a mathematical expression. 
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Nevertheless, a slightly amended version of Theorem 2. I can be established for dimen- 
sions exceeding 4 in which condition (I .?) is replaced by the condition limcJ_+XIP(Q) + 
2Qp’( Q)] = 0 in the special case 

p(Q) = p-‘(Q) cx (Q + I)-“‘. (5.3) 

In this section we prove: 

Theorem 5.1. Assume the hypotheses of Theorem 2.1 ,for the w-jotm B, u) E N, exceptfor 
conditions (1.2), (2.2), and the hypothesis on dimension. Replace (2.2) bjl the condition 
Ebb = O[T"-2"'] as 5 tends to injinity, where D is an n-disc of rudius r and n > 210. 
In llddition, let p(Q) satisfy (5.3) with positive proportionality constunt. Then B vanishes 
rdmost e\leryn?here on M. 

Proof WehaveQ(l+Q)-‘/* 5 2[(l+Q)‘/‘--l],implyingvia(5.3)thatQp(Q) ( R(Q). 
Then 

Substituting this result into (2.3) we continue as in the uniformly elliptic case but with a 
different integrating factor, to obtain in place of Lemma 2.3 the inequality 

L?(B) 
d 

- t2u'-rre-K3/r 
dr ss 

Dr 0 

This completes the proof of Theorem 5. I. 0 

If B is a 1 -form, Theorem 5.1 applies to hypersurfaces of prescribed mean curvature; the 
variational inequality (2. I), with the decay condition on ,f’. is in this case a condition on the 
decay at infinity of the mean curvature .f’ of the hypersurface. If B is a 2-form, the theorem 
applies to our generalized model of magnetostatics for a special (simple) choice of p(Q). 
The variational inequality (2. l), with the decay condition on f, is in this case a condition 
on the decay at infinity of generalized current density f. Obviously, the zero-current case in 
the magnetostatics model corresponds to the minimal surface case in the prescribed mean 
curvature model. 

Appendix A 

We take this opportunity to provide a list of errata for the first article in this sequence: 
Yung-Millsjields with nonquudratic energy, J. Geom. Phys. 19 (1996) 379-398. None of 
the corrections given here affects the truth of any of the theorems of that paper with the 
exception of (3), which actually strengthens Theorem 1.1. 
( I ) p. 379, last line: should read “formal adjoint of d” 
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(2) p. 381, lines 29, 30: should read: “unless w is a l-form”. Similarly, p. 382, line above 

Eq. (1.6): should read “I? = 1”. 
(3) p. 38 1, last paragraph: Add “The constant rn* can be taken to be zero except in Eqs. ( 1.7) 

and (1.8). In (1.7), lake Q as defined here; otherwise take Q = 1 FA I2 > 0”. 
(4) p. 382, two lines below Eq. (1.6): should read “lw1’ < 2/(y + 1)“. 
(5) p. 387. equation following inequality (3.5): should read 

(6) p. 387, inequality (3.6): should read 

-C2(1VAI + IF,AI)Q<~“-x 5 0. 

The statements leading to this inequality, beginning with Eq. (3. l), should be replaced 

by the proof of Proposition 4.1 of the present article (in which 8 is defined). The 
corrected inequality (3.6) should be carried through the calculations of Lemma 3.2, but 
the new terms added here are treated in exactly the same way as the original terms. 
so this correction does not affect the subsequent analysis in any essential way. All the 
assertions in the proof about inequality (3.6) apply to the corrected version. 

(7) p. 394, heading for Section 4: should read “The Hiilder continuity of the curvature”. 

References 

W. Allard, On the first variation of a varifold, Ann. Math. 95 ( 1972) 4 I749 I. 
D. Costa, G. Liao, On the removability of a singular submanifold for weakly harmonic maps, J. Fat. 
Sci, Univ. Tokyo Sect. IA Math. 35 (1988) 32 l-344. 
B. Gidar, .I. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations. 
Comm. Pure Appl. Math. 34 (1981) 525-598. 
M. Henneaux, C. Teitelboim, p-form electrodynamics, Found. Phys. I6 (7) (1986) 593-617. 
C. Johnson, Numerical Solutions of Partial Differential Equations by the Finite Element Method. 
Cambridge University Press, Cambridge, 1987. 
A. Lichnerowicz, Courbure, nombres de Betti espaces symmetriques, in: Proceedings of the International 
Congres\ of Mathematicians, vol. 2, 1952, pp. 216-223. 
K.B. Marathe. G. Martucci. The Mathematical Foundations of Gauge Theories. North-Holland. 
Amsterdam, 1992. 
A. Milani, R. Picard, Decomposition theorems and their application to non-linear electro- and magneto- 
static boundary value problems, in: S. Hildebrandt, R. Leis (Eds.), Partial Differential Equations and 
Calculus of Variations, Lecture Notes in Mathematics. vol. 1357, Springer, Berlin, 1988. 
C.B. Morrey, Multiple Integrals in the Calculus of Variations. Springer, Berlin, 1966. 
T.H. Otway, An asymptotic condition for variational poinls of nonquadratic functionals, Ann. Fat. Sci. 
Toulouse Math. 1 I (2) ( 1990) l87- 195. 
T.H. Otway. Yang-Mills fields with nonquadratic energy. J. Geom. Phys. I9 (1996) 379-398. 
P. Price, A monotonicity formula for Yang-Mills fields, Manuscripta Math. 43 ( 1983) 4 17-49 I. 
.I. Serrin. Local behavior of solutions of quasilinear equations. Acta Math. I I I (1964) 247-302. 
L.M. Sibner, An existence theorem for a nonregular variational problem. Manuscripta Math. 33 ( 19X3) 
45-72. 



1 IS ] L.M. Sibner, The isolated point singularity problem for the coupled Yang-Mills equations in higher 
dimensions, Math. Ann. 27 I (1985) 125-l 3 I. 

(161 L.M. Sibner, R.J. Sibner, A nonlinear Hodge-de Rham theorem. Acta Math. 125 (1970) 50-73. 
1171 L.M. Sibner, R.J. Sibner. A maximum principle for compressible How on a surface. Proc. Amer. Math. 

Sot. 71 (1)(1978) 103-108. 
[IX] L.M. Sibner, R.J. Sibner, Nonlinear Hodge theory: Applications. Adv. in Math. 31 (1970) l-15. 
[ I Y] L.M. Sibner. R.J. Sibner, A sub-elliptic estimate for a class of invariantly defined elliptic systems, Pacific 

J. Math. 94 (2) (1981) 417-421. 
[20] L.M. Sibner, R.J. Sibner, Classification of singular Sobolev connections by their holonomy. Comm. 

Math. Phys. (1992). 
1211 K. IJhlenbeck. Connections with Lj' bounds on curvature, Comm. Math. Phys. 83 (1982) 3142. 
1221 H. Wallin, A connection between o-capacity and I./‘-classes ofdifferentiable functions, Ark. Mat. 5 (24) 

(1964) 331-341. 


